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Representation of Axes for Geometric Fitting

Theodore H. Hopp

Manufacturing Systems Integration Division

National Institute ofStandards and Technology

Gaithersburg, MD 20899-0001

Abstract
We review methods for representing geometric axes in three dimensions and discuss why these methods have

undesirable properties for geometric fitting applications. We then describe a new representation that seems

better suited for use in problems of fitting geometric elements to data points. This representation was developed

in the course of our work on testing of data analysis software in coordinate measurement systems. The new
representation has allowed us to lower significantly the estimated uncertainty of our test results. Details and

properties of the representation are discussed.

Keywords: computational metrology; geometric modeling; measurement uncertainty

INTRODUCTION
A common issue in many applications is how to represent axes in three dimensions.^ One of

the most common representations is a point on the axis and a direction vector. We will call this

the naive representation, and it has serious disadvantages for some applications. We have found

the naive representation particularly problematic in our work on fitting geometric surfaces to

point data. At issue is the stability of the results of fitting.

Geometric fitting is different from many other geometric modeling applications. In a typical

modeling application, one starts with a given geometry in some representation and is concerned

with assessing geometric properties (evaluation, point classification, area, etc.). In such

applications, stability means that two geometries with similar representations (in some sense of

similarity) should have similar properties. However, stability does not preclude geometries with

radically different representations from having the same properties. (In fact, this situation is

highly desirable for geometric design, in which it is important to have a rich set of tools for

defining geometry.) In contrast, geometric fitting is the inverse problem. One starts with a given

property (the point set to be fit) and is concerned with computing the representation. In

geometric fitting applications, stability means that two geometries with similar properties (e.g.,

similar point sets to be fit) should have similar representations. That is, a small change in the

point set should not radically change the representation. Furthermore, stability does not preclude

geometries with radically different properties from having the same representation. (That is, the

same geometry may fit two very different point sets.)

It is not surprising, therefore, that the naive representation, as well as others developed for

typical geometric modeling applications, causes problems when used for fitting. Several

approaches have traditionally been used in geometric fitting to avoid the problems of the naive

^We use the term axis to mean an oriented line. This is in keeping with much of the literature of geometric fitting,

but at odds with that of spherical data analysis'. In the latter, the term is used to mean the direction (without location) of

an unoriented fine.



representation. These approaches in turn have their own shortcomings.

As will be discussed below, one effect of these problems is to increase the uncertainty of

measured values obtained with measurement systems in which fitting is part of the measurement

process. This is an economically important issue, as increased measurement uncertainty forces

tighter production tolerances (thus raising production costs) and reduces process yields.

We have developed a new axis representation method to improve geometric fitting routines

used at the U.S. National Institute of Standards and Technology (NIST) in our work on algorithm

testing for coordinate measurement systems^. The method can also be used to represent

orientations (without location). Use of this representation has had the effect of reducing the

uncertainty of our assessment of software performance, by an order of magnitude or more in

some cases.

This report is organized as follows. In the next section, we review the naive representation

and some existing methods for improving on it. Following that, we describe our new

representation. We then discuss some issues in using our representation for fitting problems,

followed by a report of our experiences in using this representation in our algorithm testing work.

Finally, we discuss some advantages and disadvantages of our representation. An appendix

following the references shows the derivation of certain formulae needed for our implementation.

EXISTING AXIS REPRESENTATIONS
This section discusses the naive representation, the problems associated with it, and various

other representation methods used to overcome these problems. It also discusses the weaknesses

of these other methods.

The Naive Representation

The naive representation, shown in Figure 1, consists of six numbers: the coordinates (jc, y, z)

of a point a on the axis and the components (u, v, w) of a vector n establishing the axis direction.

The axis is the locus of points determined parametrically in t, -«»<?<<»
, by:

pit) = a + tn. (1)

In general, we cannot assume that iw|| =1

,

since some fitting routines may not maintain

the scaling of n.

Most fitting applications are concerned

with the orthogonal distance from a point to

the axis, shown as J in Figure 1. For a point

q, this is given by:

d = min \\pit) - ^i,
^2)

where
|| ||

denotes the Euclidean vector norm.

Another distance frequently of interest is the

projected distance between q and a along the

axis, shown as / in Figure 1 . This is given by:

2 Representation ofAxesfor Geometric Fitting



(3)^ ^ {q - a) ' n

In three dimensions, d can be written using the vector cross product:

^ ^ ||(g
- g) X n\\

(4)
\\n\\

Sometimes one wishes to avoid the vector cross product. In that event, d can be expressed using

the Pythagorean Theorem^:

(5)

Practical experience indicates that (4) is less subject to numerical roundoff error than is (5),

particularly when point q is close to the axis. Equation (5), however, is more useful for deriving

expressions for the derivatives of d.

Problems of the Naive Representation

The underlying difficulty with the naive representation is that a given axis can be represented

by many different combinations of parameter values. This is the result of a surplus of

parameters: an axis in three dimensions has four degrees of freedom, while the naive

representation has six parameters. This multiplicity of representations has a geometric

interpretation: any point on an axis will locate that axis, and any non-zero scahng of the

direction vector will orient it.

That the naive representation is not unique can create severe problems in geometric fitting.

Three problems seem most serious:

• Fitting routines may fail. Fitting routines can spend all their time searching for the “best”

point on the axis or magnitude for the direction vector, when there really are no significant

geometric differences between them.

• Confidence limits may be poor. Because the naive representation is not unique, assessing the

sensitivity of the result to perturbations of the data being fit is hard. Most sensitivity analysis

methods rely on the representation being of “full rank”—that it has no redundancies^ '*. These

methods fail for the naive representation.

• Computedfits may be inaccurate. Picking an axis point far from the data being fit, or an out-

of-proportion orientation magnitude, can create large numerical roundoff errors due to poor

scaling^. In extreme cases, the calculated results may contain no correct significant digits^.

We emphasize that the first two problems are inherent weaknesses of the naive representation.

^This formula works nicely in any dimension, while the vector cross product is a three-dimensional operator.
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Some optimization routines have built-in protections that reduce the effects of the third problem.

We now examine various methods used to avoid these problems. These are of two types,

those adding constraints to the original problem and those transforming the representation to

reduce the number of parameters. (Most of the methods are quite common; we have only

provided references to notable uses of the methods in geometric fitting.) As we go along, we will

note the shortcomings of these alternatives.

Introducing Constraints

The two extra degrees of freedom of the naive representation can be eliminated by

introducing constraints. The two most common constraints are:

• Force n to be a unit vector;

• Force a to be the point on the axis closest to a given, fixed point.

For some fitting geometries (e.g., lines and planes), these constraints can be used to dramatically

simplify the formulation of the fitting problem, to the point that iterative methods are no longer

needed. Usually, however, iterative methods must be used and the constraints must be either

incorporated into the optimization method (see, e.g., Bertsekas’) or enforced outside the method

at key points in the iterations. In the former case, the need to deal with constraints considerably

complicates the optimization routines. In the latter case, the convergence properties of the

optimization method may be affected. Also, sensitivity analyses cannot be done easily.

Eliminating Parameters

Rather than introducing constraints directly in the problem, one can use them to eliminate

parameters. We describe several methods for doing this.

One method of using constraints to eliminate parameters involves iteratively transforming the

data so that the fitted axis is close to a given axis, typically the z coordinate axis. It then becomes

possible to fix the value of one or two parameters. For instance, one can introduce the

constraints z=0 and vv=l. (This method was reported by Murthy*.) In essence, then, the fitting

problem is reduced to that of finding four numbers: the x and y coordinates of the axis

intersections with the z=0 and z=l planes.

Note that this method can fail if the data are not rotated. The geometric fit may be parallel

(or nearly so) to the x-y plane. Potentially, numerical scaling problems may exist as well if the

axis is far from the origin. Thus, it is imperative that the data be rotated and translated between

iterations to bring the fitted axis close to the z coordinate axis.

Having to stop the iterations to reorient the data is a minor nuisance; many optimization

routines have built-in support for such processing. The major shortcoming of this method is

computational expense, especially when many points are being fitted. There also remain

potential scaling problems if the transformed data extend far beyond the range [0, 1] in z.

Another way to eliminate parameters is to observe that, if
| /i

||

= 1 , n represents a point on the

unit sphere. This allows us to write n using spherical angles. We will use 6 for the declination

of n from the +z axis and (p for the azimuth (angle from the +jc axis) of the projection of n in the

4 Representation ofAxesfor Geometric Fitting



x-y plane. We have the mapping:

(
\

u
( j
COS (p sm 6

n = V = sin (p sin 6

^
cos 6

,

(6)

and the inverse mapping:

{ 1 \
tan Xv/m)

,
cos'\w)

,

where 0 ^ 4)<2tz (the quadrant being determined from the signs of u and v) and 0 < ^<7U . These

mappings allow us to use (p and 6 instead of u, v, and w, thus eliminating one parameter.

Distances from points to the axis can still be calculated with (4) or (5), by using the mapping (6).

This technique works well most of the time, but it still has problems when sin^ becomes

small (that is, when n approaches the z axis). It is well-known that no parameterization of the

sphere is free of singularities, and the above parameterization is no exception. As sin^

approaches zero, (p becomes computationally unstable, and when sin^ is zero, (p is completely

indeterminate.

Even with spherical angles, we still have one extra parameter—for location. The rotation

method (described above) allows us to eliminate a parameter if we constrain a to be the axis

point closest to a given point.

If a is the axis point closest to a given point Qq then (a -a^) •« =0. Assume that we
iteratively transform the data so we are guaranteed that w*0. Then we can solve for z in the other

parameters of the naive representation and the coordinates of Oq. Combined with the spherical

angle method, this gives a minimal representation. However, we still have the potential rank

deficiency of the spherical angle method, combined with the expense of constantly rotating the

data set to ensure that w^^O.

A BETTER REPRESENTATION
All of the methods described in the last section have weaknesses that reduce their utility for

geometric fitting. In this section, we describe a method that seems better suited to fitting

applications. Our representation locates the axis with two parameters and orients it with two

parameters. We will discuss the orientation parameters first, since they are simpler to deal with.

Better Spherical Angles

The orientation parameters are a simple change to the spherical angle method of the last

section. We observed that the problem with spherical angles is that 0 becomes indeterminate

when sin ^approaches zero. We can avoid this problem by using an adaptive parameterization,

as follows. If sin^ drops below a certain threshold (say, 0.5) then we switch from the

conventional spherical angles as given in (6) and (7) to angles ^and rj that use the +x axis as the

pole:

Representation ofAxesfor Geometric Fitting 5



(
\

u
( \

COS 77

n = V = cos ^sin 77

^
sin ^sin 77^

(8)

and the inverse mapping:

V'
( 1 )
tan (w/v)

^
cos'^(m)

;

with ranges analogous to those of (7). If sin 77 becomes small, we merely switch back to

conventional spherical angles. (There is no advantage in introducing a third axis direction, since

we are merely seeking a direction orthogonal to the current axis.) We will call the conventional

representation the (Jhdmode and the alternative representation the ^-rjmode.

The only subtlety in this representation is that the thresholds for sin^ and sin 77 must be well-

separated, to avoid frequent changes of representation mode near the cross-over points. The

thresholds mentioned above, sin^<0.5 and sin 77 <0 .5 , correspond to a declination of 30 ° from the

respective poles. This neatly divides the range between the x and z axes into thirds and provides

a suitable “buffer zone” within which either representation is acceptable.

This method is reminiscent of the method of rotating the data (described in Section 2 .4), but

it can be handled in the representation by a simple mode flag. As with the method of rotating the

data set, this method requires that the fitting routine be interrupted, here whenever the mode
changes. However, instead of expensive rotations, all that is required is to change the order in

which coordinates are indexed.

Z

Figure 2 Illustration of local axes for the ^^mode.
Note that / is in the x-y plane. This construction

greatly simplifies the expressions for derivatives (see

the Appendix).

Locating the Axis

To reduce the number of location

parameters, we start as before by constraining

a to be the axis point closest to a fixed point

Aq. We then proceed differently. We observe

that a lies in the plane through having

normal n. Thus, we can locate a with two

parameters by establishing a local coordinate

system in that plane with origin at Oq.

We will assume that Aq = ® • (There is no

loss of generality, since we can always

translate the problem by -a^ before fitting.)

The method we use to establish the local axes

depends on the mode of the orientation

parameterization. We first present the

method for the ^^mode.
We will designate the positive direction of

6 Representation ofAxesfor Geometric Fitting



the local axes for the 0-^mode by x’ and y'

,

corresponding to the local x and y axes,

respectively. To establish these directions, we first rotate the original coordinate system around

the +y axis by ^and then around the (original) +z axis by (p. This rotates the +z axis to be

parallel to n. The transformed +x and +y axes become parallel to, respectively, and y\ as

shown in Figure 2. It can be shown^ that the transformed axes can be represented as:

[x' y' n)

cos4>cos6

sin^cos^

-sin^

-sin^ cos^sin^

cos4> sin^sin^

0 cos 6 j

(10)

The location parameters for the representation are the x' and y' coordinates of a in the

transformed coordinate system. We will call these e and /, respectively. We then have:

a - ex' + fy'

.

(11)

The inverse mapping is given by (7) and:

( \ (e a'X

X
(12)

For the mode, we proceed similarly. We will rotate the +x axis to be parallel to n. We
will designate positive direction for the local axes for the ^-77 mode as x" and y"

,

corresponding

to the rotated y and z axes, respectively. The local coordinates of a for the ^-77 mode will be

called g and h. The appropriate transformation is:

ifi y") =

cos 77 sm77

cos^sin77 cos^cos77

sin^sin77 sin^cos77

0

-sin^

cos4^

(13)

We then have:

a = gx" + hy".

The inverse mapping is given by (9) and:

/ N
{ /A

g a'X

(14)

(15)

FITTING CONSIDERATIONS
Computing a fit using our representation can be quite complex. Generally, for an arbitrary

point q, two distances (shown as d and I in Figure 1) and their gradients (derivatives with respect

to the fitting parameters) must be calculated by a fitting routine. Fitting routines that build up

Representation ofAxesfor Geometric Fitting 1



gradient estimates numerically must discard those estimates whenever the representation mode is

switched. (The gradients could perhaps be transformed, but the gradient estimates are generally

not accessible to users of packaged optimization routines.) Thus, fitting can be done quicker by

routines that make use of explicitly computed derivatives of d and /. For reference, expressions

for these derivatives are derived in the Appendix.

Optimization routines that accumulate gradient information numerically based on values of

the objective function being minimized may be unreliable if the representation mode is changed

during a fit and the routine is not restarted. One way to avoid this danger is to start by computing

an approximate fit using one of the standard methods described earlier and then using that result

as a starting guess for a final fit with our representation, using the representation mode for which

the initial fit is farthest from the switching threshold. So long as the first fit is reasonably good,

it will be unlikely that the representation mode will have to switch during the calculation of the

second fit. The cost of the extra fitting is quite small—since the initial fit is (presumably) close

to the optimum, the second fit using our representation will need to do very little work to arrive

at a solution. The benefit, however, is that our representation assures good numerical stability

and tighter bounds on the sensitivity of the result.

In our experiments, described below, the representation mode did not have to change during

the fitting process. Since the initial guess for each fit was reasonably good, the modes chosen

before starting the iterations remained acceptable throughout the fitting. This behavior seems

quite reasonable for this class of iterative algorithms. Other procedures, such as simulated

annealing, may have behavior requiring more mode switching; however, we have no experience

to guide us in these matters.

EXPERIMENTAL RESULTS
We implemented a cylinder-fitting routine using our new representation and compared it to a

similar routine that uses the naive representation. Experiments show that our representation can

reduce the effects of numerical roundoff errors by an order of magnitude and produce fits for

which tighter confidence intervals can be estimated. This section describes our implementations

and the results we obtained.

The Fitting Algorithm

Both fitting routines make use of a standard Levenberg-Marquardt minimization algorithm,

an example of a “trust region” search procedure. In broad terms, the algorithm proceeds in two
phases. The first phase computes a direction (in the space of fit parameter values) in which to

search. The second phase searches in that direction within the limits of the trust region radius for

a point with a smaller sum of squared residuals. These two phases alternate until some
convergence criterion is met (typically, that the step taken in the second phase is very small).

The algorithm is outlined in somewhat more detail below. Our implementation is based on a
common formulation of the Levenberg-Marquardt algorithm due to Nash’®. First, we must
explain some terminology used in the description. In our experiments, a cylinder is represented

by its axis (in either the naive or the new representation) and its radius. These parameters are

collected together into a vector/?. When using the naive representation, the constraints i«i = 1

and a'n=0 are enforced at key points in the algorithm. When using our new representation, the

8 Representation ofAxesfor Geometric Fitting



mode is checked and, if necessary, changed at the same key points. These processes are both

identified in the description as “normalizing” the parameters.^

In our algorithm, the representation mode is changed in only two places: when new gradient

information is about to be calculated and when the routine is about to converge. The mode is

changed if the declination angle is with 30° of 0° or 180°. The change is done by transforming

the parameter vector in place. The two places at which the mode can change were chosen for an

important property: at those points, no prior gradient information will be further used.

The algorithm also makes use of functions to evaluate residuals and their partial derivatives

with respect to the fitting parameters. In the description, the residuals are denoted by a vector-

valued function, f{p) . The i* component of f{p) is the residual. The partial derivatives of the

residuals are represented as a matrix-valued function F{p) ;
the element at row r and column c is

the derivative of the residual with respect to fitting parameter c. The matrix I is the identity

matrix (of size understood by context) and the notation “diag(...)” refers to the diagonal matrix

with diagonal elements indicated by the values in parentheses. In the description, a “T”

superscript denotes matrix transpose, and vectors are treated as single-column matrices.

We can now present the algorithm used in the experiments.

Modified Levenberg-Marquardt Algorithm The Levenberg-Marquardt algorithm due to Nash

is modified in Steps 2 and 5 to normalize thefit parameter vectorp, as described above. The

representation mode is changed only during normalization, and then only when the

declination is within 30 ° of the pole.

Step 1 [Initialization]. Setp to an initial guess for the fit. Set m=0.0001. (The components of

vectorp vary according to the representation. The parameter u arisesfrom the Lagrange

multiplierfor the trust region constraint; see, e.g., More^^.)

Step 2 [Determine a search direction]. Reduce m by a fixed factor, normalize p, set C=F^F

,

V =FY, d=p , and s =/*/• f are evaluated atp. s is the sum ofsquared residuals.)

Step 3 [Compute a step along the line]. Increase m by a fixed factor, setA = C + u(I + diag(Cn,

C22 , ..., c^)), and solve the system Ax=-v for jc. (The system is solved using the Choleski

decomposition ofA. x is the step to be taken.)

Step 4 [Find result of step]. Set p=d+x and t=f'f. (f is evaluated atp, which is the point

after the step, t is the sum ofsquared residuals after the step.)

Step 5 [Test results]. Check for convergence; if converged, normalizep and reportp as the

fit. Otherwise, if t^s go to Step 3 (the step was not an improvement)', else go to Step 2

(find another search direction).

This algorithm is reasonably efficient and very compact in terms of memory usage.

The main issue with which we are concerned is the difficulty of solving the matrix equation

Tf we were to implement a Levenberg-Marquardt algorithm that accumulated derivative information numerically,

normalization would require that the algorithm be terminated and, if necessary, restarted at the key points.

Representation ofAxesfor Geometric Fitting 9



in Step 3. The numerical accuracy of the fit and the sensitivity of the fit to perturbations in the

data (which is reflected in the confidence limits) depend on the condition number of matrixA at

the last iteration of the algorithm.^ With the naive representation, the matrix C can be singular

(because of the redundancies in the parameters), so the condition number ofA can be very large,

especially when u is small. We investigated these effects through a series of fitting experiments.

Experimental Results

Our experiments consisted of generating data sets representing “noisy” cylinder data, fitting

the data using both the naive and new axis representations, and comparing the results using the

methods of the NIST Algorithm Testing and Evaluation Program for Coordinate Measurement

Systems*^. Fitting was done in 64-bit IEEE real arithmetic for which the unit roundoff was about

2.2x10’^^. The fitting algorithm was run to full machine precision.

We generated 92 data sets for 14 different cylinders of 1 m radius each. The data were all

generated by sampling the cylinders at 10 cross sections, with 12 equally spaced points at each

cross section. We then perturbed each data point in a direction uniformly distributed on the

sphere by an amount uniformly distributed between 0 and 50 mm. This was done five times for

each cylinder. Data sets for 12 cylinders were left unperturbed. The cylinder had lengths of 1,

10, and 100 m. Six cylinders were sampled along an 80° arc at each cross section, 2 along 120°

of arc, and 6 around the full circumference. Six cylinders were aligned with the z axis, 4 with the

X axis, and 4 at 45 ° between. This exercised both modes of the new representation.

The fits generated with the two representations were then compared to one another. The

comparisons were done by picking first one fit and then the other as the “reference.” The pair-

wise comparisons consisted of evaluating the largest separation of the assessed axis from the

reference axis over the range of the data, the angular tilt between the axes, and the difference in

radii. The differences were, as expected, extremely small; the root-mean-square values for all

data sets were about 1.5x10 *° rad (3x10'^ arc second) tilt and about 4x10 *° m separation and

radius difference. These are regardless of which fit was used as the reference. (Note that the

differences, while small, are six orders of magnitude larger than the unit roundoff.)

Of principal interest, however, are the effects of the representation on the uncertainties of the

comparison. The comparison uncertainties are a function of the uncertainties associated with the

fits that were used as the reference. The reference fit uncertainties, in turn, are estimated firom

bounds on the numerical errors in solving the matrix equation in Step 3 of the algorithm. For

details, see Hopp and Levenson*^.

When the fits computed using the naive representation were used as the reference, the

combined standard uncertainties of the comparison were:

3.5x10 ° m for separation

1.4x10'^ arc second for tilt

5.4x10 *° m for radius difference.

When the fits computed using the new representation were used as the reference, the combined

ht should be noted that estimating the uncertainty of the fit by the matrix condition number alone can be unduly
pessimistic'^. This is, however, common practice and we used it consistently in our experiments.

10 Representation ofAxesfor Geometric Fitting



standard uncertainties of the comparison were:

1.8x10'*® m for separation

2.7x10'^ arc second for tilt

1.6x10'*® m for radius difference.

This represents nearly an order of magnitude reduction in the uncertainty of the comparison. The

same analysis done for the twelve unperturbed data sets (representing zero-residual problems)

shows much more dramatic effects. For these data sets, the observed differences were zero, but

the combined standard uncertainties of the differences were as follows:

Uncertainty Represeutatiop

separation (m):

tilt (rad):

radius (m):

naive new

1.0x10'* 9.0x10'**

4.1x10'^ 3.6x10'**

2.0x10-® 1.8x10'**

These represent a reduction of four orders of magnitude in the uncertainties of the comparisons.

The differences in comparison uncertainties can be attributed entirely to a reduction in the

uncertainties of the fits when our new representation is used. The results suggest that our new

representation is much more stable numerically. The same mechanism (matrix condition) that

affects the numerical uncertainty of the fit is used to determine confidence intervals for the fitted

geometry. Thus, we can also claim that our new representation will reduce the estimated

sensitivity of fits to perturbations in the data.

DISCUSSION
We have developed a representation for axes that has the following features:

• The axis is oriented by two parameters. The parameters are either the usual <p and 6 spherical

angles (respectively, the azimuthal angle from x and the declination from z) or alternative

angles ^and rj (respectively, the azimuthal angle from y and the declination from x).

• The axis is located by two parameters defining the point of intersection of the axis with a

plane determined by the axis orientation and a given, fixed point. The two parameters are the

coordinates of the intersection point in a two-dimensional coordinate system defined in the

plane.

• The representation is minimal and has no singularities. It requires a reparameterization to

switch between two ways to represent the axis orientation. Thresholds can be set to separate

the points at which the representation switches back and forth.

• Fits computed using this representation are less sensitive to perturbations in the data and to

roundoff error than are fits computed using more common representations.

Representation ofAxesfor Geometric Fitting 11



Our representation can be used when the axis location is of no interest—^that is, problems

involving orientation only—and for problems in which the point locating the axis is naturally

determined in other ways. For instance, one might represent a cone by its apex point, axis

direction, and cone angle. Representing the direction as described herein will avoid problems

inherent in more traditional methods.

Similarly, a problem may have translational symmetry along an axis but no rotational

symmetry (for instance, an extrusion). In such cases, the part of our method dealing with

locating the axis may be used independently of the orientation representation (although the

representation mode

—

(p-dox —must be maintained).

An axis has both rotational and translational (i.e., cylindrical) symmetry, so it might appear

that our full representation is only useful for cylinders. This is not so. Some problems that might

not appear to require the full generahty of our representation may benefit from it. For a cone, for

instance, the data may be far from the apex, so use of the apex in the representation can introduce

roundoff problems in the computations. A numerically superior representation is to locate the

axis by the axis point closest to the data centroid and locate the cone by the orthogonal distance

from that point to the cone surface*'*. Thus, our representation may be fully applicable even when

the problem is not cyhndrically symmetric.

This representation should generalize to arbitrary dimension. Conceptually, the

generalization is direct; however, finding a single, general method may be tricky—«ne would

like to avoid many special cases. The case of two dimensions is straightforward: a line can be

represented by a rotation followed by a displacement of the x axis. We note that the two-

dimensional representation requires no mode switching. In higher dimensions, one would have

to develop analogues to the spherical angle representations ((6) and (8)) and corresponding

rotation matrices ((10) and (13)). We expect the main difficulty would be in identifying die

singularities of the mappings and discovering appropriate mapping modes for avoiding them.

Finally, we wish to point out that the representation presented here is not a panacea. We
might prefer it for geometric fitting problems, but it would not be our first choice for some other

applications. Computer graphics, for instance, requires rapid evaluation of Cartesian coordinates

on the modeled geometry. Our representation, with its use of transcendental functions, would not

be a wise choice. As another example, a mechanical design engineer would like to be able to

independently manipulate groups of parameters representing conceptually different attributes—

such as location and orientation. Our representation fails in that regard, since the location

parameters are functions of orientation.

However, the very features that make our representation weak for some applications are what

make it highly suited for geometric fitting.
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APPENDIX
We here derive expressions for the derivatives of I and d for the two representation modes.

We begin with the ^^mode. By inspection, the axes defined by (10) have the following

derivatives:

dx' / a— =y cosc/

dd
- -n

— = -jc'^cos^-nsin^
dn !. a— =ysina

dtp d(p

^=0 dn 1— = x

.

dd dd

(16)

From (11) and (16), we also have:
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— - {ey' -fx')cos6-fnsAXid
d(p

(17)
da

dd
-en.

We now consider I, the projected distance between q and a along the axis. Recall that we

are assuming aQ=0, so • « = 0. Also, note that, from (10), perforce i«]|
= 1 . From the

definition of I (Equation (3)) we have:

d(t)

—q'ti = q’— = q-y'sind.
d(p d(p

(18)

Similarly,

dl d— = —qn
dd dd (19)

Since I is independent of e and/, those partial derivatives are zero.

We now turn to d. If d=Q, then q is on the axis. It is not hard to see that in a small

neighborhood of the axis parameters, d is proportional to the absolute value of each

representation parameter. Thus, the derivatives at that point are undefined. We have found that

defining all the partial derivatives of to be zero whenever <i=0 works well in practice.

Assuming then that we will use the identity

^ = _L
d4> 2d d^

and similarly for 6, e, and/. Differentiating (5) with respect to <p, we get:

_1A
2d d4>

[{q-ay{q-a)-l^] =

d̂
f .da

j
dl

-{q-a)'— -

d(p d4>

-{q -a) ' {ey'-fx') cos d+f{q -a)-n sin 6-lq'y’sin6_

{q -a) • ifx'-ey') cos 6-1 {qj'-f) sin6

d

{q -ay((fx'-ey') cos 6-ly^sin 6)

d ’

the last step following from a -y' =/. Similarly, use of (11) gives:

dd _ lle-q'X^} _ ~l{q-a)-x'

~dd d d ’

(21)

(22)
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(23)

and

dd
^

1 d{q-ay{q-a) ^ 1
=

-{q-a)-x'

Be 2d Be d Be d

M
^

-{q-a)‘y'

Bf d
(24)

For the ^-77 mode, we have the following derivatives:

Bx" //=y COS77
B^

^ '

dy” //= -j: cos77-nsm77
Bn // .— =y sin77

B^

Bx" = -n
Bq Bq

Bn It— = x .

Bq

(25)

The partial derivatives of / and d for the 77 mode then follow directly using the same chain of

operations as for the 0- ^ mode. For /, we obtain:

01 // .— = q y sm 77.

Bl n— = qx'\
Btj

(26)

(27)

Bg Bh
(28)

Regarding d in mode, when d=0, all its derivatives are defined to be zero. When d*0, we
obtain, as before:

Bd _ (q -a)
• (( hx"-gy’') cosq-ly"sin 77)

d

Bd -l{q -a)’x"

Bq d

Bd _ -iq-ayx"

d

Bd _ -(q-ayy"

Bh d

(29)

(30)

(31)

(32)

Representation ofAxesfor Geometric Fitting 15



/'‘if:'"

''%M?wW''''- ''''-Si

mv'ft ' VjS^^:''^5 '»

' t'Siii^^£ar^‘'
'

' i ^mm-^ :", ,v^^B ‘z,'
**

'’ -

"i , f.;#M^‘

4 .....

,, ',i*'*‘i

^'
' i-.v ''j.

“ .#5 ,.'| :liP: :

.

'
'

' & ..%» --.'A >fr/
. ;Jt^^i^|i

, •*!.
'*ii.

'
.

'".
' v-v'^ --h

'^
' ;'

,

. v," r^' •*(./{
.

',

''
'

’. '
,.'

. ;

*;t
'/; .;;>:w,

I'.fi- o'
'

- 'A';^?’'
i;'





I

I

1


